Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 514
Filter
1.
Viruses ; 16(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38543743

ABSTRACT

Adenoviruses (Ad) have the potential to induce severe infections in vulnerable patient groups. Therefore, understanding Ad biology and antiviral processes is important to comprehend the signaling cascades during an infection and to initiate appropriate diagnostic and therapeutic interventions. In addition, Ad vector-based vaccines have revealed significant potential in generating robust immune protection and recombinant Ad vectors facilitate efficient gene transfer to treat genetic diseases and are used as oncolytic viruses to treat cancer. Continuous improvements in gene delivery capacity, coupled with advancements in production methods, have enabled widespread application in cancer therapy, vaccine development, and gene therapy on a large scale. This review provides a comprehensive overview of the virus biology, and several aspects of recombinant Ad vectors, as well as the development of Ad vector, are discussed. Moreover, we focus on those Ads that were used in preclinical and clinical applications including regenerative medicine, vaccine development, genome engineering, treatment of genetic diseases, and virotherapy in tumor treatment.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Vaccines , Humans , Adenoviridae/genetics , Genetic Vectors/genetics , Genetic Therapy , Vaccines/genetics , Neoplasms/genetics , Neoplasms/therapy
2.
J Virol ; 98(4): e0024224, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38446633

ABSTRACT

Viral genomes frequently harbor overlapping genes, complicating the development of virus-vectored vaccines and gene therapies. This study introduces a novel conditional splicing system to precisely control the expression of such overlapping genes through recombinase-mediated conditional splicing. We refined site-specific recombinase (SSR) conditional splicing systems and explored their mechanisms. The systems demonstrated exceptional inducibility (116,700-fold increase) with negligible background expression, facilitating the conditional expression of overlapping genes in adenovirus-associated virus (AAV) and human immunodeficiency virus type 1. Notably, this approach enabled the establishment of stable AAV producer cell lines, encapsulating all necessary packaging genes. Our findings underscore the potential of the SSR-conditional splicing system to significantly advance vector engineering, enhancing the efficacy and scalability of viral-vector-based therapies and vaccines. IMPORTANCE: Regulating overlapping genes is vital for gene therapy and vaccine development using viral vectors. The regulation of overlapping genes presents challenges, including cytotoxicity and impacts on vector capacity and genome stability, which restrict stable packaging cell line development and broad application. To address these challenges, we present a "loxp-splice-loxp"-based conditional splicing system, offering a novel solution for conditional expression of overlapping genes and stable cell line establishment. This system may also regulate other cytotoxic genes, representing a significant advancement in cell engineering and gene therapy as well as biomass production.


Subject(s)
Dependovirus , Genes, Overlapping , Genes, Viral , Genetic Engineering , HIV-1 , RNA Splicing , Humans , Cell Line , Dependovirus/genetics , DNA Nucleotidyltransferases/genetics , DNA Nucleotidyltransferases/metabolism , Gene Expression Regulation, Viral , Genes, Overlapping/genetics , Genes, Viral/genetics , Genetic Engineering/methods , Genetic Therapy/methods , Genetic Vectors/genetics , HIV-1/genetics , RNA Splicing/genetics , Vaccines/biosynthesis , Vaccines/genetics , Viral Genome Packaging/genetics
3.
J Biomed Sci ; 31(1): 9, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38233833

ABSTRACT

Extracellular vesicles (EVs) are tiny, lipid membrane-bound structures that are released by most cells. They play a vital role in facilitating intercellular communication by delivering bioactive cargoes to recipient cells and triggering cellular as well as biological responses. EVs have enormous potential for therapeutic applications as native or engineered exosomes. Native EVs are naturally released by cells without undergoing any modifications to either the exosomes or the cells that secrete them. In contrast, engineered EVs have been deliberately modified post-secretion or through genetic engineering of the secreting cells to alter their composition. Here we propose that engineered EVs displaying pathogen proteins could serve as promising alternatives to lipid nanoparticle (LNP)-mRNA vaccines. By leveraging their unique characteristics, these engineered EVs have the potential to overcome certain limitations associated with LNP-mRNA vaccines.


Subject(s)
Exosomes , Extracellular Vesicles , Mesenchymal Stem Cells , Vaccines , mRNA Vaccines , Mesenchymal Stem Cells/metabolism , Extracellular Vesicles/metabolism , Exosomes/genetics , Vaccines/genetics
4.
mBio ; 15(1): e0177523, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38078742

ABSTRACT

IMPORTANCE: messenger RNA (mRNA) vaccines are a key technology in combating existing and emerging infectious diseases. However, the inherent instability of mRNA and the nonspecificity of lipid nanoparticle-encapsulated (LNP) delivery systems result in the need for cold storage and a relatively short-duration immune response to mRNA vaccines. Herein, we develop a novel vaccine in the form of circRNAs encapsulated in LNPs, and the circular structure of the circRNAs enhances their stability. Lyophilization is considered the most effective method for the long-term preservation of RNA vaccines. However, this process may result in irreversible damage to the nanoparticles, particularly the potential disruption of targeting modifications on LNPs. During the selection of lymph node-targeting ligands, we found that LNPs modified with mannose maintained their physical properties almost unchanged after lyophilization. Additionally, the targeting specificity and immunogenicity remained unaffected. In contrast, even with the addition of cryoprotectants such as sucrose, the physical properties of LNPs were impaired, leading to an obvious decrease in immunogenicity. This may be attributed to the protective role of mannose on the surface of LNPs during lyophilization. Freshly prepared and lyophilized mLNP-circRNA vaccines elicited comparable immune responses in both the rabies virus model and the SARS-CoV-2 model. Our data demonstrated that mLNP-circRNA vaccines elicit robust immune responses while improving stability after lyophilization, with no compromise in tissue targeting specificity. Therefore, mannose-modified LNP-circRNA vaccines represent a promising vaccine design strategy.


Subject(s)
RNA, Circular , Vaccines , Mannose/chemistry , Vaccines/genetics , Immunity , Freeze Drying , RNA, Messenger/genetics
5.
Immunity ; 56(12): 2665-2669, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38091944

ABSTRACT

Vaccines have stemmed many infectious diseases, but when SARS-CoV-2 emerged, traditional vaccine development would not have been fast enough. This year's Nobel Prize in Physiology or Medicine recognizes work that enabled the rapid development of mRNA vaccines, which halted the COVID-19 pandemic. The feat was a product of basic biological insights coupled with technological innovations, which have transformed vaccine design.


Subject(s)
COVID-19 , Vaccines , Humans , mRNA Vaccines , Pandemics/prevention & control , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Vaccines/genetics
6.
PLoS Negl Trop Dis ; 17(11): e0011719, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37934730

ABSTRACT

Subolesin is a conserved molecule in both hard and soft ticks and is considered as an effective candidate molecule for the development of anti-tick vaccine. Previous studies have reported the role of subolesin in blood feeding, reproduction, development, and gene expression in hard ticks. However, studies addressing the role of subolesin in soft ticks are limited. In this study, we report that subolesin is not only important in soft tick Ornithodoros turicata americanus blood feeding but also in the regulation of innate immune gene expression in these ticks. We identified and characterized several putative innate immune genes including Toll, Lysozyme precursor (Lp), fibrinogen-domain containing protein (FDP), cystatin and ML-domain containing protein (MLD) in O. turicata americanus ticks. Quantitative real-time polymerase chain reaction analysis revealed the expression of these genes in both O. turicata americanus salivary glands and midgut and in all developmental stages of these soft ticks. Significantly increased expression of fdp was noted in salivary glands and midgut upon O. turicata americanus blood feeding. Furthermore, RNAi-mediated knockdown of O. turicata americanus subolesin expression affected blood feeding and innate immune gene expression in these ticks. Significant downregulation of toll, lp, fdp, cystatin, and mld transcripts was evident in sub-dsRNA-treated ticks when compared to the levels noted in mock-dsRNA-treated control. Collectively, our study not only reports identification and characterization of various innate immune genes in O. turicata americanus ticks but also provides evidence on the role of subolesin in blood feeding and innate immune gene expression in these medically important ticks.


Subject(s)
Argasidae , Cystatins , Ornithodoros , Vaccines , Animals , Ornithodoros/genetics , Vaccines/genetics , Gene Expression , Cystatins/genetics , Immunity, Innate
7.
Int. microbiol ; 26(4): 939-949, Nov. 2023. ilus, graf
Article in English | IBECS | ID: ibc-227483

ABSTRACT

Recently, many efforts have been made to treat cancer using recombinant bacterial toxins and this strategy has been used in clinical trials of various cancers. Therapeutic DNA cancer vaccines are now considered as a promising strategy to activate the immune system against cancer. Cancer vaccines could induce specific and long-lasting immune responses against tumors. This study aimed to evaluate the antitumor potency of the SEB DNA vaccine as a new antitumor candidate against breast tumors in vivo. To determine the effect of the SEB construct on inhibiting tumor cell growth in vivo, the synthetic SEB gene, subsequent codon optimization, and embedding the cleavage sites were sub-cloned to an expression vector. Then, SEB construct, SEB, and PBS were injected into the mice. After being vaccinated, 4T1 cancer cells were injected subcutaneously into the right flank of mice. Then, the cytokine levels of IL-4 and IFN-γ were estimated by the ELISA method to evaluate the antitumor activity. The spleen lymphocyte proliferation, tumor size, and survival time were assessed. The concentration of IFN-γ in the SEB-Vac group showed a significant increase compared to other groups. The production of IL-4 in the group that received the DNA vaccine did not change significantly compared to the control group. The lymphocyte proliferation increased significantly in the mice group that received SEB construct than PBS control group (p < 0.001). While there was a meaningful decrease in tumor size (p < 0.001), a significant increase in tumor tissue necrosis (p < 0.01) and also in survival time of the animal model receiving the recombinant construct was observed.(AU)


Subject(s)
Animals , Mice , Cancer Vaccines/genetics , Interleukin-4 , Mice, Inbred BALB C , Necrosis , Vaccines/genetics , Enterotoxins , Neoplasms , Microbiological Techniques
8.
Biologicals ; 84: 101700, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37708679

ABSTRACT

In recent years, urgent unmet medical needs due to the COVID-19 pandemic have accelerated the application of mRNA technology in vaccine development, leading to some of the first approvals of mRNA vaccines in human history by regulatory agencies around the world. For market authorization, comprehensive chemistry, manufacturing and control (CMC) information is required to assure the safety and quality consistency of mRNA vaccines. Evaluating mRNA vaccines for new virus variants poses a challenge for regulators, given the rapid optimization and development based on prior platform knowledge to accelerate the development process, which is traditionally limited for biological products. Here we summarize the current regulatory considerations of CMC evaluation on mRNA vaccines based on the scientific knowledge available, which will be updated with the advance of mRNA biology and pharmaceutical science.


Subject(s)
COVID-19 , Nanoparticles , Vaccines , Humans , Pandemics/prevention & control , COVID-19/prevention & control , RNA, Messenger/genetics , Vaccines/genetics
9.
Ticks Tick Borne Dis ; 14(6): 102227, 2023 11.
Article in English | MEDLINE | ID: mdl-37419001

ABSTRACT

Ticks and tick-borne diseases constitute a major threat for human and animal health worldwide. Vaccines for the control of tick infestations and transmitted pathogens still represents a challenge for science and health. Vaccines have evolved with antigens derived from inactivated pathogens to recombinant proteins and vaccinomics approaches. Recently, vaccines for the control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have shown the efficacy of new antigen delivery platforms. However, until now only two vaccines based on recombinant Bm86/Bm95 antigens have been registered and commercialized for the control of cattle-tick infestations. Nevertheless, recently new technologies and approaches are under consideration for vaccine development for the control of ticks and tick-borne pathogens. Genetic manipulation of tick commensal bacteria converted enemies into friends. Frankenbacteriosis was used to control tick pathogen infection. Based on these results, the way forward is to develop new paratransgenic interventions and vaccine delivery platforms for the control of tick-borne diseases.


Subject(s)
COVID-19 , Cattle Diseases , Rhipicephalus , Tick Infestations , Tick-Borne Diseases , Vaccines , Cattle , Animals , Humans , Tick Infestations/prevention & control , Tick Infestations/veterinary , SARS-CoV-2/metabolism , Vaccines/genetics , Tick-Borne Diseases/prevention & control , Rhipicephalus/metabolism , Antigens , Cattle Diseases/prevention & control
10.
Biotechnol Adv ; 67: 108197, 2023 10.
Article in English | MEDLINE | ID: mdl-37315875

ABSTRACT

Protein glycosylation has a huge impact on biological processes in all domains of life. The type of glycan present on a recombinant glycoprotein depends on protein intrinsic features and the glycosylation repertoire of the cell type used for expression. Glycoengineering approaches are used to eliminate unwanted glycan modifications and to facilitate the coordinated expression of glycosylation enzymes or whole metabolic pathways to furnish glycans with distinct modifications. The formation of tailored glycans enables structure-function studies and optimization of therapeutic proteins used in different applications. While recombinant proteins or proteins from natural sources can be in vitro glycoengineered using glycosyltransferases or chemoenzymatic synthesis, many approaches use genetic engineering involving the elimination of endogenous genes and introduction of heterologous genes to cell-based production systems. Plant glycoengineering enables the in planta production of recombinant glycoproteins with human or animal-type glycans that resemble natural glycosylation or contain novel glycan structures. This review summarizes key achievements in glycoengineering of plants and highlights current developments aiming to make plants more suitable for the production of a diverse range of recombinant glycoproteins for innovative therapies.


Subject(s)
Plants , Vaccines , Animals , Humans , Glycosylation , Plants/genetics , Plants/metabolism , Recombinant Proteins/metabolism , Vaccines/genetics , Polysaccharides/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism
11.
Methods Mol Biol ; 2673: 401-410, 2023.
Article in English | MEDLINE | ID: mdl-37258929

ABSTRACT

Reverse vaccinology (RV) consists in the identification of potentially protective antigens expressed by any organism starting from genomic information and derived from in silico analysis, with the aim of promoting the discovery of new candidate vaccines against different types of pathogens. This approach makes use of bioinformatics techniques to screen the whole genomic sequence of a specific pathogen for the identification of the epitopes that could elicit the best immune response. The use of in silico techniques allows to reduce dramatically both the time and cost required for the identification of a potential vaccine, also facilitating the laborious process of selection of those antigens that, with a traditional approach, would be completely impossible to detect or culture. RV methodologies have been successfully applied for the identification of new vaccines against serogroup B meningococcus (MenB), Bacillus anthracis, Streptococcus pneumonia, Staphylococcus aureus, Chlamydia pneumoniae, Porphyromonas gingivalis, Edwardsiella tarda, and Mycobacterium tuberculosis. As a case of study, we will go in depth into the application of RV techniques on Influenza A virus.


Subject(s)
Influenza A virus , Vaccines , Influenza A virus/genetics , Vaccinology/methods , Vaccines/genetics , Genomics/methods , Computational Biology/methods
12.
Brief Bioinform ; 23(4)2022 07 18.
Article in English | MEDLINE | ID: mdl-35649389

ABSTRACT

Rational vaccine design, especially vaccine antigen identification and optimization, is critical to successful and efficient vaccine development against various infectious diseases including coronavirus disease 2019 (COVID-19). In general, computational vaccine design includes three major stages: (i) identification and annotation of experimentally verified gold standard protective antigens through literature mining, (ii) rational vaccine design using reverse vaccinology (RV) and structural vaccinology (SV) and (iii) post-licensure vaccine success and adverse event surveillance and its usage for vaccine design. Protegen is a database of experimentally verified protective antigens, which can be used as gold standard data for rational vaccine design. RV predicts protective antigen targets primarily from genome sequence analysis. SV refines antigens through structural engineering. Recently, RV and SV approaches, with the support of various machine learning methods, have been applied to COVID-19 vaccine design. The analysis of post-licensure vaccine adverse event report data also provides valuable results in terms of vaccine safety and how vaccines should be used or paused. Ontology standardizes and incorporates heterogeneous data and knowledge in a human- and computer-interpretable manner, further supporting machine learning and vaccine design. Future directions on rational vaccine design are discussed.


Subject(s)
COVID-19 , Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Data Mining , Humans , Machine Learning , Vaccines/chemistry , Vaccines/genetics , Vaccinology/methods
13.
Genome Res ; 32(4): 791-804, 2022 04.
Article in English | MEDLINE | ID: mdl-35361626

ABSTRACT

An important challenge in vaccine development is to figure out why a vaccine succeeds in some individuals and fails in others. Although antibody repertoires hold the key to answering this question, there have been very few personalized immunogenomics studies so far aimed at revealing how variations in immunoglobulin genes affect a vaccine response. We conducted an immunosequencing study of 204 calves vaccinated against bovine respiratory disease (BRD) with the goal to reveal variations in immunoglobulin genes and somatic hypermutations that impact the efficacy of vaccine response. Our study represents the largest longitudinal personalized immunogenomics study reported to date across all species, including humans. To analyze the generated data set, we developed an algorithm for identifying variations of the immunoglobulin genes (as well as frequent somatic hypermutations) that affect various features of the antibody repertoire and titers of neutralizing antibodies. In contrast to relatively short human antibodies, cattle have a large fraction of ultralong antibodies that have opened new therapeutic opportunities. Our study reveals that ultralong antibodies are a key component of the immune response against the costliest disease of beef cattle in North America. The detected variants of the cattle immunoglobulin genes, which are implicated in the success/failure of the BRD vaccine, have the potential to direct the selection of individual cattle for ongoing breeding programs.


Subject(s)
Cattle Diseases , Vaccines , Animals , Antibodies , Cattle , Cattle Diseases/prevention & control , North America , Vaccines/genetics
14.
Commun Biol ; 5(1): 199, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241789

ABSTRACT

Cystic echinococcosis is a socioeconomically important parasitic disease caused by the larval stage of the canid tapeworm Echinococcus granulosus, afflicting millions of humans and animals worldwide. The development of a vaccine (called EG95) has been the most notable translational advance in the fight against this disease in animals. However, almost nothing is known about the genomic organisation/location of the family of genes encoding EG95 and related molecules, the extent of their conservation or their functions. The lack of a complete reference genome for E. granulosus genotype G1 has been a major obstacle to addressing these areas. Here, we assembled a chromosomal-scale genome for this genotype by scaffolding to a high quality genome for the congener E. multilocularis, localised Eg95 gene family members in this genome, and evaluated the conservation of the EG95 vaccine molecule. These results have marked implications for future explorations of aspects such as developmentally-regulated gene transcription/expression (using replicate samples) for all E. granulosus stages; structural and functional roles of non-coding genome regions; molecular 'cross-talk' between oncosphere and the immune system; and defining the precise function(s) of EG95. Applied aspects should include developing improved tools for the diagnosis and chemotherapy of cystic echinococcosis of humans.


Subject(s)
Echinococcosis , Echinococcus granulosus , Vaccines , Animals , Antigens, Helminth/genetics , Chromosomes , Echinococcosis/genetics , Echinococcosis/prevention & control , Echinococcus granulosus/genetics , Genotype , Helminth Proteins/genetics , Vaccines/genetics
15.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046024

ABSTRACT

Transmissible vaccines have the potential to revolutionize how zoonotic pathogens are controlled within wildlife reservoirs. A key challenge that must be overcome is identifying viral vectors that can rapidly spread immunity through a reservoir population. Because they are broadly distributed taxonomically, species specific, and stable to genetic manipulation, betaherpesviruses are leading candidates for use as transmissible vaccine vectors. Here we evaluate the likely effectiveness of betaherpesvirus-vectored transmissible vaccines by developing and parameterizing a mathematical model using data from captive and free-living mouse populations infected with murine cytomegalovirus (MCMV). Simulations of our parameterized model demonstrate rapid and effective control for a range of pathogens, with pathogen elimination frequently occurring within a year of vaccine introduction. Our results also suggest, however, that the effectiveness of transmissible vaccines may vary across reservoir populations and with respect to the specific vector strain used to construct the vaccine.


Subject(s)
Betaherpesvirinae/genetics , Genetic Vectors/genetics , Immunogenicity, Vaccine , Models, Theoretical , Nucleic Acid-Based Vaccines/immunology , Vaccines/immunology , Algorithms , Animal Diseases/prevention & control , Animal Diseases/transmission , Animal Diseases/virology , Animals , Bayes Theorem , Disease Reservoirs , Disease Vectors , Genetic Vectors/immunology , Herpesviridae Infections/veterinary , Mice , Muromegalovirus , Nucleic Acid-Based Vaccines/genetics , Prevalence , Vaccines/genetics
16.
Viruses ; 14(1)2022 01 13.
Article in English | MEDLINE | ID: mdl-35062344

ABSTRACT

The baculovirus display system (BDS), an excellent eukaryotic surface display technology that offers the advantages of safety, efficiency, and economy, is widely used in biomedicine. A previous study using rBacmid-Δgp64-ires-gp64 expressed in low copy numbers of the gp64 gene achieved high-efficiency expression and co-display of three fluorescent proteins (GFP, YFP, and mCherry). However, low expression of GP64 in recombinant baculoviruses also reduces the efficiency of recombinant baculovirus transduction into mammalian cells. In addition, the baculovirus promoter has no expression activity in mammalian cells and thus cannot meet the application requirements of baculoviral vectors for the BDS. Based on previous research, this study first determined the expression activity of promoters in insect Spodoptera frugiperda 9 cells and mammalian cells and successfully screened the very early promoter pie1 to mediate the co-expression of multiple genes. Second, utilizing the envelope display effect of the INVASIN and VSVG proteins, the efficiency of transduction of recombinant baculovirus particles into non-host cells was significantly improved. Finally, based on the above improvement, a recombinant baculovirus vector displaying four antigen proteins with high efficiency was constructed. Compared with traditional BDSs, the rBacmid-Δgp64 system exhibited increased display efficiency of the target protein by approximately 3-fold and induced an approximately 4-fold increase in the titer of serum antibodies to target antigens in Bal B/c mice. This study systematically explored the application of a new multi-gene co-display technology applicable to multi-vaccine research, and the results provide a foundation for the development of novel BDS technologies.


Subject(s)
Baculoviridae/genetics , Genetic Vectors/immunology , Vaccines/genetics , Vaccines/immunology , Animals , Antibodies, Viral/blood , Escherichia coli , Gene Expression Regulation, Viral , Genetic Vectors/genetics , HEK293 Cells , Humans , Immunogenicity, Vaccine , Mice , Promoter Regions, Genetic , Sf9 Cells
17.
Curr Opin Biotechnol ; 74: 104-109, 2022 04.
Article in English | MEDLINE | ID: mdl-34894574

ABSTRACT

Global implementation of messenger RNA (mRNA) vaccines represents an enormous advance with far-reaching implications for respiratory disease treatment. mRNA vaccines offer exceptional efficacy and versatile capacity to be adapted to new viruses and variants; however, critical questions remain regarding immune persistence and formulation stability. This represents a significant opportunity for developing next-generation, inhaled mRNA vaccines with the ability to drive long-lasting, tissue-specific memory responses needed for rapid recall and immediate local protection. Advances in pulmonary delivery technologies offer potential to overcome translational challenges including design of aerosol-stable and lung-stable formulations, navigation of pulmonary biological barriers, and a lack of predictive models and measurement techniques. We highlight recent advances in each of these challenge areas to illuminate the path to translation.


Subject(s)
Vaccines , mRNA Vaccines , Vaccines/genetics , Vaccines, Synthetic/genetics
18.
PLoS Negl Trop Dis ; 15(11): e0009981, 2021 11.
Article in English | MEDLINE | ID: mdl-34793443

ABSTRACT

Extracellular Vesicles (EVs) are an integral component of cellular/organismal communication and have been found in the excreted/secreted (ES) products of both protozoan and metazoan parasites. Within the blood fluke schistosomes, EVs have been isolated from egg, schistosomula, and adult lifecycle stages. However, the role(s) that EVs have in shaping aspects of parasite biology and/or manipulating host interactions is poorly defined. Herein, we characterise the most abundant EV-enriched protein in Schistosoma mansoni tissue-migrating schistosomula (Schistosoma mansoni Larval Extracellular Vesicle protein 1 (SmLEV1)). Comparative sequence analysis demonstrates that lev1 orthologs are found in all published Schistosoma genomes, yet homologs are not found outside of the Schistosomatidae. Lifecycle expression analyses collectively reveal that smlev1 transcription peaks in cercariae, is male biased in adults, and is processed by alternative splicing in intra-mammalian lifecycle stages. Immunohistochemistry of cercariae using a polyclonal anti-recombinant SmLEV1 antiserum localises this protein to the pre-acetabular gland, with some disperse localisation to the surface of the parasite. S. mansoni-infected Ugandan fishermen exhibit a strong IgG1 response against SmLEV1 (dropping significantly after praziquantel treatment), with 11% of the cohort exhibiting an IgE response and minimal levels of detectable antigen-specific IgG4. Furthermore, mice vaccinated with rSmLEV1 show a slightly reduced parasite burden upon challenge infection and significantly reduced granuloma volumes, compared with control animals. Collectively, these results describe SmLEV1 as a Schistosomatidae-specific, EV-enriched immunogen. Further investigations are now necessary to uncover the full extent of SmLEV1's role in shaping schistosome EV function and definitive host relationships.


Subject(s)
Cercaria/immunology , Extracellular Vesicles/immunology , Helminth Proteins/immunology , Schistosoma mansoni/immunology , Schistosomiasis mansoni/parasitology , Adolescent , Adult , Amino Acid Sequence , Animals , Anthelmintics/administration & dosage , Antibodies, Helminth/immunology , Cercaria/genetics , Cercaria/growth & development , Child , Cohort Studies , Extracellular Vesicles/genetics , Female , Helminth Proteins/administration & dosage , Helminth Proteins/chemistry , Helminth Proteins/genetics , Humans , Immunogenicity, Vaccine , Immunoglobulin E/immunology , Immunoglobulin G/immunology , Male , Mice , Middle Aged , Praziquantel/administration & dosage , Schistosoma mansoni/chemistry , Schistosoma mansoni/genetics , Schistosoma mansoni/growth & development , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/immunology , Sequence Alignment , Vaccines/administration & dosage , Vaccines/genetics , Vaccines/immunology , Young Adult
19.
PLoS Negl Trop Dis ; 15(10): e0009732, 2021 10.
Article in English | MEDLINE | ID: mdl-34597297

ABSTRACT

Two hookworm vaccine candidates, Na-GST-1 and Na-APR-1, formulated with Glucopyranosyl Lipid A (GLA-AF) adjuvant, have been shown to be safe, well tolerated, and to induce antibody responses in a Phase 1 clinical trial (Clinicaltrials.gov NCT02126462) conducted in Gabon. Here, we characterized T cell responses in 24 Gabonese volunteers randomized to get vaccinated three times with Na-GST-1 and Na-APR-1 at doses of 30µg (n = 8) or 100µg (n = 10) and as control Hepatitis B (n = 6). Blood was collected pre- and post-vaccination on days 0, 28, and 180 as well as 2-weeks after each vaccine dose on days 14, 42, and 194 for PBMCs isolation. PBMCs were stimulated with recombinant Na-GST-1 or Na-APR-1, before (days 0, 28 and 180) and two weeks after (days 14, 42 and 194) each vaccination and used to characterize T cell responses by flow and mass cytometry. A significant increase in Na-GST-1 -specific CD4+ T cells producing IL-2 and TNF, correlated with specific IgG antibody levels, after the third vaccination (day 194) was observed. In contrast, no increase in Na-APR-1 specific T cell responses were induced by the vaccine. Mass cytometry revealed that, Na-GST-1 cytokine producing CD4+ T cells were CD161+ memory cells expressing CTLA-4 and CD40-L. Blocking CTLA-4 enhanced the cytokine response to Na-GST-1. In Gabonese volunteers, hookworm vaccine candidate, Na-GST-1, induces detectable CD4+ T cell responses that correlate with specific antibody levels. As these CD4+ T cells express CTLA-4, and blocking this inhibitory molecules resulted in enhanced cytokine production, the question arises whether this pathway can be targeted to enhance vaccine immunogenicity.


Subject(s)
Ancylostomatoidea/immunology , Antigens, Helminth/administration & dosage , Hookworm Infections/immunology , Hookworm Infections/prevention & control , T-Lymphocytes/immunology , Vaccines/administration & dosage , Adjuvants, Immunologic/administration & dosage , Adult , Ancylostomatoidea/genetics , Animals , Antibodies, Helminth/immunology , Antibody Formation , Antigens, Helminth/genetics , Antigens, Helminth/immunology , CTLA-4 Antigen/genetics , CTLA-4 Antigen/immunology , Female , Gabon , Hookworm Infections/parasitology , Humans , Immunity, Cellular , Male , Middle Aged , Vaccination , Vaccines/genetics , Vaccines/immunology , Young Adult
20.
PLoS Negl Trop Dis ; 15(10): e0009865, 2021 10.
Article in English | MEDLINE | ID: mdl-34699522

ABSTRACT

BACKGROUND: Trichinellosis is a serious zoonotic disease distributed around the world. It is needed to develop a safe, effective and feasible anti-Trichinella vaccine for prevention and control of trichinellosis. The aim of this study was to construct a recombinant Lactobacillus plantarum encoding Trichinella spiralis inorganic pyrophosphatase (TsPPase) and investigate its immune protective effects against T. spiralis infection. METHODOLOGY/PRINCIPAL FINDINGS: The growth of recombinant L. plantarum was not affected by TsPPase/pSIP409-pgsA' plasmid, and the recombinant plasmid was inherited stably in bacteria. Western blot and immunofluorescence assay (IFA) indicated that the rTsPPase was expressed on the surface of recombinant L. plantarum. Oral vaccination with rTsPPase induced higher levels of specific serum IgG, IgG1, IgG2a and mucosal secretory IgA (sIgA) in BALB/c mice. ELISA analysis revealed that the levels of IFN-γ and IL-4 released from spleen, mesenteric lymph nodes and Peyer's patches were evidently increased at 2-4 weeks following vaccination, compared to MRS (De Man, Rogosa, Sharpe) medium control group (P < 0.05). Immunization of mice with rTsPPase exhibited a 67.18, 54.78 and 51.91% reduction of intestinal infective larvae, adult worms and muscle larvae at 24 hours post infection (hpi), 6 days post infection (dpi) and 35 dpi, respectively (P < 0.05), and the larval molting and development was significantly inhibited by 45.45% at 24 hpi, compared to the MRS group. CONCLUSIONS: TsPPase plays a crucial role in T. spiralis molting and development, oral vaccination with rTsPPase induced a significant local mucosal sIgA response and systemic Th1/Th2 immune response, and immune protection against T. spiralis infection in BALB/c mice.


Subject(s)
Helminth Proteins/administration & dosage , Inorganic Pyrophosphatase/administration & dosage , Lactobacillus plantarum/genetics , Trichinella spiralis/immunology , Trichinellosis/prevention & control , Vaccines/administration & dosage , Administration, Oral , Animals , Antibodies, Helminth/immunology , Female , Helminth Proteins/genetics , Helminth Proteins/immunology , Humans , Immunoglobulin G/immunology , Inorganic Pyrophosphatase/genetics , Inorganic Pyrophosphatase/immunology , Lactobacillus plantarum/metabolism , Mice , Mice, Inbred BALB C , Trichinella spiralis/enzymology , Trichinella spiralis/genetics , Trichinellosis/immunology , Trichinellosis/parasitology , Vaccination , Vaccines/genetics , Vaccines/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...